Sunday 23 May 2021

Application of FEA in Automotive Industry

Introduction 

 we delve into Finite Element Analysis (FEA) and FEA services, it is necessary to understand what Finite Elemental Method (FEM) means. FEM is a precursor to understanding FEA.
The basic concept behind Finite Elemental Method is to replace any complex shape with the summation of a large number of regular / simple shapes (like a rectangle, triangle, etc.). 
These shapes are then combined to correctly model the original part. These smaller, simpler shapes are called finite elements because each such shape occupies a finite sub-space within the original, complex shape. For example, it is easier to visualize an engine, airplane, a machine component or skeleton as made up of smaller, simpler components. It makes modelling easier. And unlike finite difference models, finite elements do not overlap in space.

Figure 1: FEA Simulation of a piston rod. The different colors are indicators of variable values that help predict mechanical behavior.


What is Finite Element Analysis (FEA)?

FEA is thus a numerical method that offers a means to find approximate solutions to complex mechanical engineering problems. FEA methods contrast to the infinitesimally small or differential elements used for centuries to derive differential equations.
 FEA has traditionally been a branch of Solid Mechanics. However, with the advent of sophisticated CAD and CAE tools, FEA is now used to solve design problems in mechanical and other engineering fields like aerospace and defence, automotive, electrochemical and consumer goods.


Here are the steps involved in FEA:

1. Divide the interval of integration - the numerical result is an approximation to exact solution.

2. In each sub-interval, choose proper simple functions to emulate the true function - the accuracy of numerical result depends on the number of sub-interval and approximate function.


Areas of FEA Application

A FEA is the most common tool for stress and structural analysis. It can also receive input data from other tools like kinematics analysis systems and computation fluid dynamics systems.

                               Fig 2.

Example application of FEA – Axle. Observe mesh on critical parts being refined to capture sensitive quantities like stresses and strains.


 FEA software can be used in:

  • Mechanical Engineering design
  •  Advantages of FEA in mechanical engineering design are :- 
  • can be used to demonstrate a new design concept that would help the engineering team predict its possible real-world behavior under diverse load environments. Based on this analysis, any suitable alteration can be easily made before finalizing the drawing.

 
                                  Fig. 3
  • The biggest strength of Finite Element Analysis techniques is the sensitive software used to deliver in-depth and precise analysis of various physical and functional aspects of materials, systems, products, 3D CAD designs etc.

  • Structural engineering 

Structures are made up of infinite number of atoms. Any structure built requires to be tested for its structural integrity.
For example If engineers were to analyze a simple structure theortically, for stress analysis, they would have to calculate the stress value on each atom( practically impossible!)to prove its safe design.


                                Fig. 4

Hence we use Finite Element Method to help us evaluate the stress values. In finite element method, infinite atoms are replaced by finite nodes and the bonds are replaced by elements. This makes sense from engineering point of view as it is now practically possible to evaluate stress values at finite locations than at infinite points.


  • Modal Analysis
The goal of modal analysis in structural mechanics is to determine the natural mode shapes and frequencies of an object or structure during free vibration. It is common to use the finite element method (FEM) to perform this analysis because, like other calculations using the FEM, the object being analyzed can have arbitrary shape and the results of the calculations are acceptable. The types of equations which arise from modal analysis are those seen in eignsystem.

                                Fig. 5

 The physical interpretation of the eigenvalues and eginvectors which come from solving the system are that they represent the frequencies and corresponding mode shapes. Sometimes, the only desired modes are the lowest frequencies because they can be the most prominent modes at which the object will vibrate, dominating all the higher frequency modes.

  • Solid mechanics 
The finite element method (FEM) is a computer technique for solving partial differential equations.  One application is to predict the deformation and stress fields within solid bodies subjected to external forces.  However, FEM can also be used to solve problems involving fluid flow, heat transfer, electromagnetic fields, diffusion, and many other phenomena. 

                                Fig.6

The principle objective of the displacement based finite element method is to compute the displacement field within a solid subjected to external forces.


  • Mould Flow Analysis
Mold flow computes the injection molding process where plastic flows into a mold and analyzes the given mold design to check how the parts react to injection and ensure that the mold will be able to produce the strongest and uniform pieces.


  • Fatigue & Fracture Mechanics

Fatigue failure occurs when a material is subjected to repeated loading and unloading cycles. The level of stresses present to cause failure may be well below values considered safe for a single static load application. The critical fatigue initiation is usually at a very localized site and may be a result of additional factors such as stress concentration due to component shape, surface finish or corrosion pitting.

                                Fig.7

Fatigue has been cited as one of the major causes of in-service failure throughout engineering history. The nature and prediction of fatigue is now much more understood, and is a requirement for most design products today. However the application of fatigue analysis is not easy and a good background is essential to be able to use the powerful FEA method as a basis for fatigue analysis.


  • Thermal and Electrical analysis
A method is developed to predict the effective thermal conductivity and thermal resistance of the woven fabric by using finite element method (FEM). Repeating unit cell of the fabric is developed by using the actual parametric value of the fabric by using scanning electron microscope (SEM) and then analyse these unit cell by applying different boundary conditions. 

                                   Fig.7

The predicted effective thermal conductivity and thermal resistance value of fabric are compared with experimental value.

  • Sheet Metal forming analysis

                                  Fig.8
 
Today the metal forming industry is making increasing use of simulation to evaluate the performing of dies, processes and blanks prior to building try-out tooling. Finite Element Analysis (FEA) is the most common method of simulating sheet metal forming operations to determine whether a proposed design will produce parts free of defects such as fracture or wrinkling.


Finite  Element  Modeling  and Simulation of  Car  Crash 

Safety  is  one  of  the  design  considerations  in  automobile  community.  Therefore,  crash  test  is  an important  step  to  validate  the  novel  car  design.  However,  high  cost  in  experimental  testing  limits  the number  of  crash tests, and adequate data might  not  be obtained consequently. Alternatively, numerical modeling  and  simulation  have  been  widely  used  to  study  car  crash  in  addition  to  experimental  testing. As  a  powerful  numerical  tool,  finite  element  method  (FEM) plays  an  vital  role  in  crash  test simulations.     

we  simulated  a  car  crashing  into  the  wall  virtually  to  understand  the  devastating outcome  that  car  crashes  can  have  on  automobiles.  To  simplify  the  study,  only  the  car  frame  was considered  in  our  studies.  The  car  model  was  generated  in  the  3d  modeling  software  CREO  and  then imported  to  the  FEM  analysis  software  ANSYS  for  mesh  generation  and  FEM  analysis.  We  adopted quasi-static  simulation  tool  in  ANSYS,  and  employed  the  conservation  of  linear  momentum  to calculate  the  time-averaged  force  acting  on  the  car  during  the  impact.  Therefore,  the  wall  was  not modeled  in  our  studies.  Various  incoming  velocities  were  considered,  and  the  car  deformation  was compared to  the  one  from  a real  life testing.   

The  design  of  the  car  frame  was  generated  in  the  3D  modeling  software  CREO,  where  the  car  was created as a  life size model  to accurately  examine the effects of  a car  crash. 
The  dimensions  of  the  car  were  researched  online  on  the Ford  website  and  translated  into  the  design  in  CREO.
As  mentioned  before,  only  the  frame  of  the  explorer  was  generated  in  order  to  analyze  how  the  frame structure  deforms during  the impact  of  a crash. 

Isometric view  of the  Ford  Explorer in  real life :- 


 Isometric view of the Ford Explorer inCREO :-

The  geometry  was  exported  as  an  IGS  file  from  CREO  and  then  imported  into  ANSYS  for  mesh generation  and  FEM  analysis.  Upon  importing  the  geometry,  the  material  was  set  to  aluminum  alloy for  the  car  body.  The  mass  of  a  Ford  Explorer  is  approximately  2458kg,  based  on  the  information  on the  Ford  website. 


Mesh  generation for the Ford Explorer in  ANSYS :- 

A fine  mesh  was  placed  on  the  front  of  the  car  to  accurately  depict  the  event  of  a  crash,  where  a  wall would  hit  the  whole  front  of  the  car  rather  than  at  different  points  on  the  fender,  which  is  what  a coarse  mesh  would  provide.
Then  the  nodal  forces,  applied  at  the  nodes  as  shown  in  Figure 

Applied nodal forces on contact points  of car :- 

Various  incoming  speeds,  from  20mph  to  100mph  in  increments  of  20mph,  were  considered  here  as the  speeds  of  car  before  impact.
The  deformed  configurations  of  car  after  impact  are  shown  in Figures  below 

A) Total deformation  of  car  at 20mph 




B) Total deformation  of  car  at 60mph



C) Total deformation  of  car  at 100mph


Conclusion :- 

The  numerical  modeling  and  simulation  of  car  crash  have  been  carried  on  in  automobile  companies for  years.  Finite  element  analysis  can  generate  realistic  results  that  help  scientists  and  engineers understand  the  way  that  cars  are  effected  by  different  crash  scenarios.  Instead  of  running  real  life situations,  it  is  much  more  cost  effective  to  simulate  car  crash  using  a  commercial  software  such  as ANSYS. 


References :- 

 (2007) Applications of Finite Element Analysis in Structural Engineering.

Clough, Ray W. and Joseph Penzien, Dynamics of Structures, 2nd Ed., McGraw-Hill Publishing Company, New York, 1993, page 173

Bathe, Klaus Jürgen, Finite Element Procedures, 2nd Ed., Prentice-Hall Inc., New Jersey, 1996, page 786

https://www.brown.edu/Departments/Engineering/Courses/En1750/Notes/FEA_Intro/FEA_Intro.htm

http://www.autoform.com/en/products/solution-tryout-part-production/application-examples-tryout-part-production/

T.  Belytschko,  W.K.  Liu  and  B.  Moran,  Nonlinear  Finite  Elements  for  Continua  and  Structures, 1st  ed. U.S.:  Wiley, New York, 2001.

 Lin  C.  S.,  Chou  K.  D.  and  Yu  C.  C.,  Numerical  simulation  of  vehicle  crashes,  Appl.  Mech.  Mat. 590, 135  (2014).

Kankariya  N.  and  Sayyad  F.  B.,  Numerical  simulation  of  bumper  impact  analysis  and  to  improve design for  crash worthiness, Int. J. Engrg. Sci. 4(5),  58  (2015). 

Sun  T.,  Liu  T.,  Shen  I  F.  and  Ma  Y.  S.,  Numerical  simulation  of  car  rash  analysis  based  on distributed  computational  environment,  Conference  Proceeding,  5th  Int.  Conference  on Algorithms and Architectures  for  Parallel  Processing, Pp 334-337, (2002).

1 comment:

Application of FEA in Automotive Industry

Introduction    we delve into Finite Element Analysis (FEA) and FEA services, it is necessary to understand what Finite Elemental Method (FE...